

БАРЬЕРЫ БЕЗОПАСНОСТИ РИФ-П

2.087.044-00P3

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Руководство по эксплуатации (в дальнейшем - РЭ) содержит технические данные, описание принципа действия и устройства, а также сведения, необходимые для правильной эксплуатации пассивных барьеров безопасности РИФ-П.

Эксплуатация должна производиться согласно требованиям главы 7.3 ПУЭ, главы 3,4 ПЭЭП и других нормативных документов, регламентирующих применение электрооборудования во взрывоопасных условиях.

Пассивные барьеры имеют гальваническую связь между входом и выходом и относятся к классу шунтдиодных барьеров с обязательным искрозащитным заземлением.

По способу защиты человека от поражения электрическим током барьеры относятся к классу 01 по ГОСТ 12.2.007.0-75.

Барьеры обеспечивают искробезопасность при подключении неискробезопасного оборудования с напряжением питания до 250 В.

Барьеры являются средствами измерений.

Барьеры выполнены в соответствии с требованиями предъявляемыми ГОСТ 31610.11-2014 к взрывозащищенному электрооборудованию подгрупп IIC, IIB и IIA, имеют маркировку по взрывозащите «[Ex ia Ga]IIC/IIB», «[Ex ib Gb]IIC/IIB», «[Ex ib Gb]IIA».

Барьеры являются связанным электрооборудованием по ГОСТ 31610.11-2014 и предназначены для установки за пределами взрывоопасных зон помещений и наружных установок.

По эксплуатационной законченности барьеры являются изделиями третьего порядка по ГОСТ Р 52931-2008.

ВНИМАНИЕ! БАРЬЕРЫ ПРЕДНАЗНАЧЕНЫ ДЛЯ РАЗМЕЩЕНИЯ ВНЕ ВЗРЫВООПАСНОЙ ЗОНЫ.

РЕМОНТ БАРЬЕРОВ ДОЛЖЕН ОСУЩЕСТВЛЯТЬ ТОЛЬКО ЗАВОД — ИЗГОТОВИТЕЛЬ, ИМЕЮЩИЙ ЗАКЛЮЧЕНИЕ О ВЗРЫВОЗАЩИЩЁННОСТИ БАРЬЕРОВ И РАЗРЕШЕНИЕ НА ИХ ВЫПУСК.

МОНТАЖ БАРЬЕРОВ ПРОИЗВОДИТЬ СОГЛАСНО СХЕМАМ ПОДКЛЮЧЕНИЯ.

Сокращенные обозначения датчиков, используемые в тексте:

- AT токовая автоматика (выходной токовый сигнал с датчиков давления, температуры, расхода, уровня и т.д.);
- AT (старая) токовая автоматика, у которой максимальное входное напряжение U_i < 28 В (преобладала до середины 90-х годов, в основном отечественная — Сапфир 22-Ех и т.д.);
- **TC** термометры сопротивления:
 - *TC-2x* подключаемые, по 2-х проводной схеме подключения;
 - *TC-3x* подключаемые, по 3-х проводной схеме подключения;
 - *TC-4x* подключаемые, по 4-х проводной схеме подключения;
- *ТП* термопары:
 - *ТП (ИХС*) с изолированным холодным спаем;
 - *ТП (не ИХС)* с неизолированным холодным спаем;
- **ЭП** электропневматические преобразователи;
- **ЭПП** электропневмопозиционеры;
- Н напряжение амплитудой (значение указано в скобках);
- **RS-485** интерфейс RS-485;
- **RS-422** интерфейс RS-422;
- Π потенциометры;
- **РП** реостатные датчики положения;
- *TH* тензомосты:
 - **TH-4x** подключаемые, по 4-х проводной схеме подключения;
 - TH-6mu подключаемые, по 6-ти проводной схеме подключения;
- Namur датчики с выходом типа Namur (стандарт DIN 19234 или EN 60947-5-6), а также датчики с выходом типа «Сухой контакт»;
- ОК импульсные выходы типа «Открытый коллектор» (пассивные числоимпульсные выходы расходомеров, осуществляющие генерирование выходного сигнала путем замыкания и размыкания выходного транзистора);
- ПВТ преобразователи вихретоковые (АР2000 производства ООО «ГлобалТест»).

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение барьеров

Барьеры безопасности РИФ-П (в дальнейшем барьеры), предназначены для:

- измерения и последующего преобразования информативных сигналов датчиков;
- обеспечения искробезопасности питающих и информативных цепей оборудования взрывозащищенного исполнения.

Барьеры могут применяться на объектах нефтедобычи, нефтепереработки, химического производства, энергетики, металлургии и машиностроения и других отраслях промышленности, связанных с получением, переработкой, использованием и хранением взрыво- и пожароопасных веществ и продуктов.

- 1.1.1 Барьеры имеют вид взрывозащиты «искробезопасная электрическая цепь» и выполнены в соответствии с требованиями, предъявляемыми к взрывозащищенному электрооборудованию подгрупп IIC, IIB, IIA по ГОСТ 31610.0-2019 и ГОСТ 31610.11-2014.
- 1.1.3 Основные типы сигналов (датчиков) и рекомендуемые для их подключения исполнения барьеров указаны в таблице 1.

Таблица 1

Тип** сигнала/ датчика	Диапазон сигнала	Параметры сигнала или способ под- ключения	Исполнение барьера * (без указа- ния способа крепления)	Кол. подключ. датчиков	Номер схе- мы подклю- чения
		TO (AVC)	РИФ-П1111 РИФ-П1112	1 2	Г.1
ТΠ	Любой	ТП (ИХС)	РИФ-П1116	6	Г.2 Г.3
		ТП (не ИХС)	РИФ-П2112	2	Г.5
			РИФ-П1111	1	Г.1
	Для ТС	TC-2x	РИФ-П1112	2	Г.2
	100М и 100П		РИФ-П1116	6	Г.4
TC	ток опроса	TC-3x	РИФ-П1113	1	Г.3
	не более	7 C-3X	РИФ-П1116	4	Г.4
	2 мА	TC-4x	РИФ-П1112	1	Γ.2
		1 C-4X	РИФ-П1116	3	Г.4
Mumandaŭ		RS-485	РИФ-П1141	1	Г.6
Интерфей-	До 115 кБит	K3-403	РИФ-П1142	2	Γ.7
СЫ		RS-422	РИФ-П1142	1	Γ.7
П, РП		4-х пров.	РИФ-П1142	1	Г.7

Продолжение таблицы 1

Тип** сигнала/	Диапазон сигнала	Параметры сигнала или	Исполнение барьера *	Кол. под- ключ. датчи-	Номер схе- мы подклю-
датчика	- Om Hasia	способ под-	(без указа-	КОВ	чения
		ключения	ния способа	KOD	10111111
			крепления)		
ЭП, ЭПП	4-20 мА	Нагрузка до	РИФ-П1181	1	Г.9
	0	600 Ом			0
711	D. G. č	TH-4x	РИФ-П1292	1	Г.16
TH	Любой	TH-6mu	РИФ-П1196	2	Г.13
			РИФ-П1191	1	Г.11
		Незаземл.	РИФ-П1192	2	Г.12
			РИФ-П1196	6	Г.13
AT	4-20 мА, ре-	Незаземл.	РИФ-П1291	1	Г.15
	же 0-20 и 0-	IIA	РИФ-П1292	2	Г.16
	5 мА	Заземл.	РИФ-П2192	2	Г.14
		Заземл. IIA	РИФ-П2292	2	Γ.17
AT		Незаземл.	РИФ-П1181	1	Г.9
(старая)		TICSASCIVITI.	РИФ-П1182	2	Г.10
	Частота не		РИФ-П1191	1	Г.11
ОК	более 100	Незаземл.	РИФ-П1192	2	Г.12
	кГц		РИФ-П1196	6	Г.13
	·	Заземл.	РИФ-П2192	2	Г.14
	От		РИФ-Пхх1х		
	-0,7 до +0,7		(все с 3-ей		Г.1 — Г.5
	В		цифрой 1)		
	От	Напряже-	РИФ-Пхх4х		
	-12 до +12 В	ние посто-	(все с 3-ей	Равно значе-	Г.6 – Г.8
Н		янное, пе-	цифрой 4)	нию 4-ой	
	От	ременное,	РИФ-Пхх8х	цифры	
	-18 до +18 В		(все с 3-ей		Г.9, Г.10
			цифрой 8) РИФ-Пхх9х	-	
	От		(все с 3-ей		Г.11 – Г.17
	-24 до +24 В		(все с 3-еи цифрой 9)		1.11 - 1.17
			_ цифрои <i>э)</i>		

Продолжение таблицы 1

Тип** сигнала/ датчика	Диапазон сигнала	Параметры сигнала или способ под-	Исполнение барьера * (без указа-	Кол. под- ключ. датчи- ков	Номер схе- мы подклю- чения
		ключения	ния способа крепления)		
Momun	По 100 кГи		РИФ-П1141	1	Г.6
Namur	До 100 кГц		РИФ-П1142	2	Г.15
Питание		Незаземл.	РИФ-П1291	1	Г.15
датчиков	≤24 B, ≤1,5 Bт	i iesasemii.	РИФ-П1292	2	Г.16
группы IIA		Заземл.	РИФ-П2292	2	Γ.17
ПВТ			РИФ-П2292	1	Г.18

Примечания

^{*} Все барьеры, кроме РИФ-П1116-DIN и РИФ-П1196-DIN, имеют исполнения как для крепления на шину заземления, так и для крепления на 35-ти миллиметровую DIN-рейку.

^{**} Для каждого типа сигнала возможно применение других моделей барьеров, в случае, если их параметры искрозащиты и способ подключения допустимы для данного типа сигнала (датчика).

1.2 Технические характеристики

- 1.2.1 Габаритные и присоединительные размеры барьеров приведены в приложениях А и Б.
- 1.2.2 Исполнения пассивных барьеров выбираются по карте заказа (смотри приложение Д) и их характеристики, в том числе:
- уровень взрывозащиты выходных электрических цепей барьеров («ia особовзрывобезопасный» или «ib» взрывобезопасный);
 - группа взрывозащищенного электрооборудования (IIC, IIB или IIA);
 - максимальное проходное сопротивление одной ветви;
 - диапазон изменения сигнала;
 - номинальный ток предохранителя;
- а также типы подключаемых к ним сигналов (датчиков) указаны в таблице 2.
- 1.2.3 Входные и выходные цепи барьеров рассчитаны на подключение информативных цепей с унифицированными сигналами по ГОСТ 26.011-80.

Номинальные рабочие значения напряжения и силы тока барьеров не превышают значений, указанных в таблице 2.

1.2.4 Зависимость выходного сигнала от входного определяется по формуле:

$$I = (I_{_{\mathit{B}}} - I_{_{\mathit{H}}}) \frac{X - X_{_{_{\mathit{H}}}}}{X_{_{_{\mathit{B}}}} - X_{_{_{\mathit{H}}}}} + I_{_{\mathit{H}}}, \tag{1}$$

где І – значение выходного сигнала, мА;

Ів, Ін – соответственно верхнее и нижнее предельные значения выходного сигнала, мА;

Х – значение входного сигнала, мА, В;

Хв, Хн – соответственно верхнее и нижнее предельные значения входного сигнала, мА, В.

- 1.2.5 Пассивные барьеры пропускают в обе стороны сигналы постоянных напряжения и тока без ограничения их полярности, либо сигналы переменного тока без искажения формы.
 - 1.2.6 Масса барьеров не превышает:
 - для РИФ-П1116DIN 200 г;
 - для РИФ-П1196DIN 280 г;
 - для остальных барьеров 135 г.
 - 1.2.7 Степень защиты корпуса барьера IP30 по ГОСТ 14254-2015.

Таблица 2

Исполнения	Уровень	Группа	Максималь-	Верхний	Номи-
барьеров	взрыво-	элек-	ное проход-	предел диа-	нальный
	защиты	трообо-	ное сопро-	пазона из-	ток предо-
		рудова-	тивление	менения	хранителя,
		РИН	одной ветви,	сигнала,	мА
			Ом	В/ мА	
	<u>Для защ</u>	иты про	стейших дат	ников	
РИФ-П1111	[Ex ia Ga]	IIC/IIB	22,5	0,7 / 2	50
РИФ-П1112	Ex ia Ga]	IIC/IIB	22,5	0,7 / 2	50
РИФ-П1113	Ex ia Ga]	IIC/IIB	19,5	0,7 / 2	50
РИФ-П1116DIN	[Ex ia Ga]	IIC/IIB	16,5	0,7 / 2	50
РИФ-П2112	[Ex ib Gb]	IIC/IIB	22,5	0,7 / 2	50
Для зац	циты ста	ндартнь	их сигналов и и	интерфейсов	3
РИФ-П1141	[Ex ia Ga]	IIC/IIB	100	12 / 20	50
РИФ-П1142	[Ex ia Ga]	IIC/IIB	100	12 / 20	50
РИФ-П2142	Ex ib Gb	IIC/IIB	118	12 / 20	50
<u>Для защить</u>	<u> і токовой</u>	автома	тики и цепей г	питания дат	чиков
РИФ-П1181	Ex ia Ga]	IIC/IIB	150	18 / 20	50
РИФ-П1182	Ex ia Ga]	IIC/IIB	150	18 / 20	50
РИФ-П1191	[Ex ia Ga]	IIC/IIB	170	24 / 20	50
РИФ-П1192	[Ex ia Ga]	IIC/IIB	170	24 / 20	50
РИФ-П1196DIN	[Ex ia Ga]	IIC/IIB	170	24 / 20	50
РИФ-П2192	Ex ib Gb	IIC/IIB	330	24 / 20	50
РИФ-П1291	[Ex ia Ga]	IIA	68	24 / 20	50
РИФ-П1292	Ex ia Ga]	IIA	68	24 / 20	50
РИФ-П2292	Ex ib Gb	IIA	122	24 / 20	50

Примечания.

- 1 Все барьеры, кроме РИФ-П1116-DIN и РИФ-П1196-DIN, имеют исполнения как для крепления на шину заземления, так и для крепления на 35-ти миллиметровую DIN-рейку.
 - 2 Нижний предел диапазона изменения сигнала равен нулю, В и мА
- 3 Наиболее распространённые исполнения барьеров выделены жирным шрифтом.

1.2.8 Максимальные значения выходного напряжения Um искроопасных цепей, максимальные значения выходных напряжения Uo, тока Io, мощности Po искробезопасных цепей, а также предельные параметры внешних искробезопасных цепей барьеров не превышают значений, указанных в таблице 3.

Таблица 3

Обозначение	Um,	Uo, B	lo,	C	Со, мк	Ф		Lo, мГ	Н	Po,
барьера	В	ОО, Б	мА	IIA	IIB	IIC	IIA	IIB	IIC	Вт
РИФ-П1111	250	4,5	395	-	90	15	-	1,6	0,36	0,44
РИФ-П1112	250	4,5	395	-	90	15	-	1,6	0,36	0,44
РИФ-П1113	250	4,5	590	-	80	10	-	0,75	0,17	0,66
РИФ-П1116DIN	250	4,5	590	-	80	10	-	0,75	0,17	0,66
РИФ-П2112	250	4,5	395	-	90	15	-	1,6	0,36	0,44
РИФ-П1141	250	14	170	-	4,0	0,45	-	6,5	1,2	0,60
РИФ-П1142	250	14	170	-	4,0	0,45	-	6,5	1,2	0,60
РИФ-П2142	250	14	170	-	4,0	0,45	-	6,5	1,2	0,60
РИФ-П1181	250	24	100	-	0,8	0,08	-	9,0	1,7	0,66
РИФ-П1182	250	24	100	-	0,8	0,08	-	9,0	1,7	0,66
РИФ-П1191	250	28	93	-	0,7	0,07	-	11,0	2,0	0,65
РИФ-П1192	250	28	93	-	0,7	0,07	ı	11,0	2,0	0,65
РИФ-П1196DIN	250	28	93	-	0,7	0,07	-	11,0	2,0	0,65

Обозначение	Um,	LIO D	lo,	C	о, мк	Ф		Lo, мГ	Н	Po,
барьера	В	Uo, B	мА	IIA	IIB	IIC	IIA	IIB	IIC	Вт
РИФ-П1291	250	28	270	3,0	-	-	1,0	-	ı	1,89
РИФ-П1292	250	28	270	3,0	-	-	1,0	-	ı	1,89
РИФ-П2192	250	28	93	-	0,7	0,07	-	11,0	2,0	0,65
РИФ-П2292	250	28	270	3,0	-	-	1,0	-	-	1,89

Продолжение таблицы 3

Примечание - Все барьеры, кроме РИФ-П1116-DIN и РИФ-П1196-DIN, имеют исполнения как для крепления на шину заземления, так и для крепления на 35-ти миллиметровую DIN-рейку.

1.2.9 Пределы допускаемой основной погрешности преобразования пассивных барьеров, выраженной в процентах от разности верхнего и нижнего предельных значений, равны ± 0,1.

Условия, при которых нормируется основная погрешность, соответствуют следующим:

- температура окружающего воздуха плюс (20 ± 2) °C;
- относительная влажность окружающего воздуха от 30 до 80 %;
- атмосферное давление от 86 до 106 кПа;
- отсутствие вибрации, тряски и ударов, влияющих на работу барьеров.
- 1.2.10 Разность между проходными сопротивлениями ветвей барьеров РИФ-П1113SHI, РИФ-П1113DIN и РИФ-П1116DIN при нормальных условиях не превышает 0,1 Ом.
- 1.2.11 Пределы дополнительной погрешности пассивных барьеров, вызванной изменением температуры окружающего воздуха от (20 ± 2) °C до верхнего (нижнего) рабочего значения, на каждые 10 °C не превышают основной погрешности преобразования.
- 1.2.12 Изменение разности проходных сопротивлений барьеров РИФ-П1113SHI, РИФ-П1113DIN и РИФ-П1116DIN, вызванное изменением температуры окружающей среды в диапазоне рабочих температур, не превышает 0,04 Ом на каждые 10 °C.
- 1.2.13 Барьеры являются устойчивыми к воздействию синусоидальных вибраций частотой от 10 до 55 Гц и амплитудой смещения 0,35 мм.
- 1.2.14 Барьеры имеют следующие климатические исполнения по ГОСТ 15150-69:

- УХЛ3, но для работы при температуре окружающей среды от минус 50 до 60 °C и верхнем значении относительной влажности 80 % при 25 °C и более низких температурах без конденсации влаги;
- Т3, но для работы при температуре окружающей среды от минус 20 до 60 °C и верхнем значении относительной влажности 98 % при 35 °C без конденсации влаги.
- 1.2.15 Напряжения на искробезопасных входах барьеров соответствуют указанным в таблице 4.

Таблица 4

Исполнение ба- рьера	Номера контактов по схеме проверки	Значение напря- жения между контактами, В
РИФ-П1111SHI	1 - Земля, 2 - Земля	3,7 – 4,8
РИФ-П1111DIN	5 - 7, 6 - 7	3,7 – 4,8
РИФ-П1112SHI	1 - Земля, 2 - Земля, 3 - Земля, 4 - Земля	3,7 – 4,8
РИФ-П1112DIN	8 - 7, 9 - 7, 11 - 10, 12 - 10	3,7 – 4,8
РИФ-П1113SHI	1 - Земля, 2 - Земля, 4 - Земля	3,7 – 4,7
РИФ-П1113DIN	5 - 7, 6 - 7, 8 - 7	3,7 – 4,7
РИФ-П1116DIN	14 - 20, 15 - 20, 16 - 20, 17 - 20, 18 - 20, 19 - 20, 21 - 20, 22 - 20, 23 - 20, 24 - 20, 25 - 20, 26 - 20	1,5 – 4,7
РИФ-П2112SHI	2 - Земля, 4 - Земля	3,7 - 4,8
РИФ-П2112DIN	6 - 5, 8 - 7	3,7 - 4,8
РИФ-П1141SHI	1 - Земля, 2 - Земля	13,7 – 16,2
РИФ-П1141DIN	5 - 7, 6 - 7	13,7 – 16,2
РИФ-П1142SHI	1 - Земля, 2 - Земля, 3 - Земля, 4 - Земля	13,7 – 16,2
РИФ-П1142DIN	8 - 7, 9 - 7, 11 - 10, 12 - 10	13,7 – 16,2
РИФ-П2142SHI	2 - Земля, 4 - Земля	13,7 – 16,2
РИФ-П2142DIN	6 - 5, 8 - 7	13,7 – 16,2
РИФ-П1181SHI	1 - Земля, 2 - Земля	13,6 – 16,2
РИФ-П1181DIN	5 - 7, 6 - 7	13,6 – 16,2
РИФ-П1182SHI	1 - Земля, 2 - Земля, 3 - Земля, 4 - Земля	13,6 – 16,2
РИФ-П1182DIN	8 - 7, 9 - 7, 11 - 10, 12 - 10	13,6 – 16,2
РИФ-П1191SHI	1 - Земля, 2 - Земля	14,7 – 17,5
РИФ-П1191DIN	5 - 7, 6 - 7	14,7 – 17,5
РИФ-П1192SHI	1 - Земля, 2 - Земля, 3 - Земля, 4 - Земля	14,7 – 17,5
РИФ-П1192DIN	8 - 7, 9 - 7, 11 - 10, 12 - 10	14,7 – 17,5
РИФ-П1292SHI	1 - Земля, 2 - Земля, 3 - Земля, 4 - Земля	14,0 – 16,7

Продолжение таблицы 4

Исполнение ба- рьера	Номера контактов по схеме проверки	Значение напря- жения между контактами, В
РИФ-П1292DIN	8 - 7, 9 - 7, 11 - 10, 12 - 10	14,0 – 16,7
РИФ-П2192SHI	2 - Земля, 4 - Земля	25,8 – 31,2
РИФ-П2192DIN	6 - 5, 8 - 7	25,8 – 31,2
РИФ-П2292SHI	2 - Земля, 4 - Земля	25,0 - 29,7
РИФ-П2292DIN	6 - 5, 8 - 7	25,0 - 29,7

Примечания

- 1- Земляные штыри барьеров при проверке должны быть замкнуты внешними перемычками (кроме барьеров РИФ-П1111 РИФ-П2292).
- 2 Проверять напряжение на искробезопасных входах необходимо между парой контактов, перечисленных через тире. Пары контактов между собой разделены запятыми.
 - 1.2.16 Барьеры в упаковке для транспортирования выдерживают:
- воздействие ударов со значением пикового ударного ускорения 98 м/с², длительностью ударного импульса 16 мс с общим числом ударов (1000 ± 10) в направлении, обозначенном на таре манипуляционным знаком «Верх»;
 - температуру от минус 50 до плюс 50 °C;
- воздействие относительной влажности (95 \pm 3) % при температуре 35 °C.
- 1.2.17 Средняя наработка на отказ барьеров с учетом технического обслуживания 120000 ч.

Средняя наработка на отказ устанавливается для следующих условий и режимов:

- температура окружающего воздуха (25 ± 10) °C;
- относительная влажность от 45 до 80 % без конденсации влаги;
- атмосферное давление от 84,0 до 106,7 кПа;
- внешние электрические и магнитные поля (кроме земного), влияющие на работу барьера, отсутствуют;
- вибрация, удары, влияющие на работу барьера, практически отсутствуют.

Критерием отказа барьеров является несоответствие пп. 1.2.9, 1.2.10.

- 1.2.18 Средний срок службы барьеров не менее 12 лет
- 1.2.19 Назначенный срок службы 12 лет.

1.3 Устройство и работа

- 1.3.1 Барьеры обеспечивают взрывозащищенность благодаря ограничению электрической мощности, подаваемой во взрывоопасную зону по цепям связи с электрооборудованием.
- 1.3.2 Мощностные характеристики всех резисторов барьеров выбраны с учетом регламентируемого запаса по мощности, принятого в искробезопасных цепях.
- 1.3.3. Функциональные схемы барьеров искрозащиты отображены на схемах внешних электрических соединений (см. приложение Г).
- 1.3.4 Для повышения надежности барьеров цепочки стабилитронов выполнены с дублированием.
- 1.3.5 Барьеры содержат следующие однотипные функциональные элементы и узлы:
- ограничительные резисторы, определяющие ток короткого замыкания (закрашены в темный цвет);
- группу ограничительных стабилитронов и диодов, определяющих максимальное значение напряжения холостого хода в искробезопасной цепи (закрашены в темный цвет);
- диодно-резистивные или резистивные цепочки, содержащие последовательно включенный плавкий предохранитель, служат для отключения искробезопасной цепи при возникновении аварийных напряжений на искроопасном входе или выходе соответствующего типа барьера.

1.4 Маркировка

- 1.4.1 На табличке, прикрепленной к боковой стороне барьеров, нанесено:
 - товарный знак и/или наименование предприятия-изготовителя;
 - наименование барьеров;
 - знак взрывобезопасности;
 - знак утверждения типа;
- порядковый номер барьеров по системе нумерации предприятияизготовителя;
 - месяц, год выпуска;
 - надпись СДЕЛАНО В РОССИИ.
- 1.4.2 На табличке, прикрепленной к другой боковой стороне барьеров, нанесено:
 - условное обозначение барьеров;
 - номер сертификата соответствия
- схема внешних электрических соединений с упрощенной функциональной схемой барьеров;
- значения выходного напряжения Um искроопасных цепей и выходного напряжения Uo, тока Io, мощности Ро искробезопасных цепей;
 - значения параметров внешней искробезопасной цепи.
 Допускается объединять таблички по пп. 1.4.1; 1.4.2.

1.4.3 Вблизи мест присоединения внешних электрических цепей барьеров нанесены номера контактов.

1.5 Упаковка

Упаковка соответствует категории упаковки КУ-1 по ГОСТ 23170-78. Барьеры упакованы в картонные коробки. В них же находятся Руководство по эксплуатации и паспорт.

Вариант защиты барьеров В3-0, вариант внутренней упаковки ВУ-0 по ГОСТ 9.014-78.

Предельный срок защиты без консервации – три месяца.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Общие указания

- 2.1.1 При получении ящиков с барьерами необходимо проверить сохранность тары. В случае ее повреждения следует составить акт и обратиться с рекламацией к транспортной организации.
- 2.1.2 В зимнее время ящики с барьерами распаковывать в отапливаемом помещении не ранее, чем через 8 ч после внесения их в помещение.
- 2.1.3 Проверить комплектность в соответствии с паспортом на барьер и его работоспособность по методике, приведенной в пунктах указанных в таблице 5.
- 2.1.4 Рекомендуется сохранять паспорт, который является юридическим документом при предъявлении рекламации предприятию-изготовителю и поставщику. В паспорт должны включаться данные, касающиеся хранения и эксплуатации барьера.

2.2 Обеспечение взрывозащищенности при монтаже

- 2.2.1 Барьеры относятся к электрооборудованию общего исполнения и устанавливаются вне взрывоопасных зон, в помещениях достаточно защищенных от влаги, пыли, грязи, вибраций, механических повреждений, несанкционированного доступа и чрезмерных колебаний температуры.
- 2.2.2 Барьеры безопасности без гальванического разделения с выходной цепью уровня «ia» допускаются для применения в зоне «0» при выполнении следующих требований ГОСТ Р 51330.13-99:
- электрическая прочность изоляции искробезопасных (внешних) цепей и электрооборудования (термопары, термометры сопротивления и т.п.) должна выдерживать испытательное напряжение (эффективное) переменного тока не менее 500 В;
- заземляющее устройство барьера должно быть соединено с системой выравнивания потенциала (эквипотенциальной шиной), или только для TN-S систем соединено с точкой заземления способом, который гарантирует, что полное сопротивление между точками соединения и за-

земления основной системы питания не более 1 Ом.

Это может быть достигнуто:

- а) соединением с шиной заземления внутри выключателя;
- б) использованием отдельных заземляющих стержней;
- в) изолированием используемого проводника, для предотвращения попадания токов короткого замыкания, которые могли бы протекать в металлических конструкциях, с которыми он может соприкасаться (например, корпус панели управления);
- г) механической защитой используемого проводника в местах, где высок риск его повреждения;
- питание электрооборудования, гальванически связанное с цепями барьера (связанное оборудование), должно выполняться от разделительного сетевого трансформатора с системой защиты от короткого замыкания.
- 2.2.3 Перед монтажом барьеры следует осмотреть, проверить маркировку по взрывозащите, целостность корпуса и гарантийных табличек.
- 2.2.4 Перед присоединением линий связи барьеры должны быть надежно заземлены.
- 2.2.5 Подключение барьеров должно производиться в соответствии со схемами внешних подключений, приведенными в приложении Г.
- 2.2.6 Линия связи между барьерами и взрывозащищенным электрооборудованием может быть выполнена любым типом кабеля с медными проводами сечением не менее 0,35 мм², согласно ПУЭ-85.

Сопротивление изоляции проводов искробезопасной цепи должно быть не менее 30 МОм.

- 2.2.7 Кабели опасной зоны должны быть надежно закреплены и удалены от всех остальных кабелей. Они должны подводиться к оборудованию опасной зоны через гибкую изоляционную трубку, кабелепровод или кабельный желоб, проложенный в опасной зоне.
- 2.2.8 Кабели безопасной зоны должны выводиться из оборудования безопасной зоны через гибкую изоляционную трубку, кабелепровод или кабельный желоб, проложенный в безопасной зоне.
- 2.2.9 Шина заземления, к которой подключаются барьеры, должна быть индивидуальной, к ней запрещается подключать заземление какого-либо силового оборудования.

Поперечное сечение заземляющего проводника должно представлять собой:

- два и более независимых провода, каждый из которых способен пропускать максимальный возможный номинальный длительный ток и обладать проводимостью, соответствующей проводимости медного проводника с сечением не менее 1,5 мм²;
- один и более провод, проводимость которого соответствует проводимости проводника, выполненного из меди, сечением не менее 4 мм².

2.2.10 При монтаже барьера необходимо руководствоваться настоящим РЭ, главой 3.4 ПЭЭП, главой 7.3 ПУЭ и другими документами, действующими в данной отрасли промышленности.

2.3 Эксплутационные ограничения

- 2.3.1 Место установки барьеров должно быть удобно для проведения монтажа, демонтажа и обслуживания.
- 2.3.2 При монтаже барьеров, работающих в комплекте с термопарами типа L, K, S, A-1, A-2, A-3 необходимо соблюдать следующие условия:
- линия связи от датчика до барьера и от барьера до прибора выполняется однотипными компенсационными проводами с диаметром не более 2,5 мм;
- температура входных и выходных клемм барьера должна быть одинаковой для уменьшения погрешности измерения.
- 2.3.3 Суммарное значение сопротивления линии связи барьера с датчиком и проходного сопротивления барьера не должно превышать допустимого сопротивления линии связи вторичного прибора или устройства.

2.4 МЕТОДЫ И СРЕДСТВА ПОВЕРКИ

Настоящая методика распространяется на первичную поверку при выпуске из производства, первичную поверку после ремонта и периодическую в процессе эксплуатации.

Перечень средств измерений и оборудования, применяемых для контроля барьеров, приведен в таблице В.1.

Интервал между поверками составляет 2 года.

2.4.1 Операции и средства поверки

При проведении поверки должны выполняться операции, указанные в таблице 5.

Таблица 5

Наименование операции	№ пп. проверки
1 Внешний осмотр	2.4.2
2 Проверка напряжения на искробезопасных входах	2.4.3
3 Проверка разности проходных сопротивлений ветвей барьеров РИФ-П1113SHI, РИФ-П1113-DIN и РИФ-П1116-DIN	2.4.4
4 Определение основной погрешности преобразования сигналов	2.4.5

Проверка барьеров должна проводиться в нормальных условиях (см. п. 1.2.9)

Время прогрева не менее 30 мин.

2.4.2 Внешний осмотр

При проведении внешнего осмотра должно быть установлено соответствие барьера следующим требованиям:

- наличие маркировки по взрывозащите;
- отсутствие обрывов или повреждений изоляции линии внешних соединений;
 - надежность присоединения кабелей;
- надёжность присоединения заземляющих проводов или штырей к шине заземления;
 - отсутствие вмятин, видимых механических повреждений;

Барьеры, забракованные при внешнем осмотре, дальнейшей проверке не подлежат.

ВНИМАНИЕ! ЭКСПЛУАТАЦИЯ БАРЬЕРОВ С ПОВРЕЖДЕНИЯМИ И НЕИСПРАВНОСТЯМИ КАТЕГОРИЧЕСКИ ЗАПРЕЩЕНА.

2.4.3 Проверка напряжения на искробезопасных входах

а) Подключить барьер к схеме проверки напряжения на искробезопасных входах (см. рисунок В.4) согласно таблице 4.

Установить напряжение источника G1 равным (35,0 ± 0,1) В.

Контроль напряжения источника G1 осуществляют по показаниям вольтметра PV1.

б) Проверять напряжение на искробезопасных входах необходимо между парой контактов, перечисленных через запятую (см. таблицу 4).

Барьеры РИФ-П1 – РИФ-П8 проверяют, подавая на первый контакт отрицательное напряжение, а на второй – положительное.

Барьеры РИФ-П1111 – РИФ-П2292, РИФ-П1111-DIN – РИФ-П2292-DIN проверяют, подавая на первый контакт отрицательное напряжение, а на второй – положительное. Затем, наоборот: на первый контакт – положительное напряжение, а на второй – отрицательное.

Контроль напряжения на искробезопасных входах осуществляют по показаниям вольтметра PV2.

в) Барьеры считают выдержавшими испытания, если напряжения на проверяемых контактах, контролируемое вольтметром PV2, соответствуют требованиям п. 1.2.15.

2.4.4 Проверка разности проходных сопротивлений ветвей барьеров РИФ-П1113, РИФ-П1113-DIN и РИФ-П1116-DIN

- **a**) С помощью цифрового омметра со следующими техническими характеристиками:
 - диапазон измерений, Ом, не менее

- абсолютная погрешность, Ом, не более 0,02, (например: цифровой вольтметр универсальный B7-54/3)

измерить сопротивления между следующими клеммами:

- 1) Для барьеров РИФ-П1113:
- сопротивление первой ветви измеряют на клеммах 2, 5;
- сопротивление второй ветви на клеммах 1, 6;
- сопротивление третьей ветви на клеммах 4, 7.
- 2) Для барьеров РИФ-П1113-DIN:
- сопротивление первой ветви измеряют на клеммах 5, 3;
- сопротивление второй ветви на клеммах 6, 4;
- сопротивление третьей ветви на клеммах 8, 2.
- 3) Для барьеров РИФ-П1116-DIN:

Сопротивление каждой из 12-ти ветвей измеряют на клеммах: (1 и 14), (2 и 15), (3 и 16), (4 и 17), (5 и 18), (6 и 19), (8 и 21), (9 и 22), (10 и 23), (11 и 24), (12 и 25), (13 и 26).

- б) Затем определить разность проходных сопротивлений ветвей.
- **в**) Барьеры считать выдержавшими испытания, если они соответствуют требованиям п. 1.2.10.

2.4.5 Определение основной погрешности преобразования

При проверке барьеры подключают по схемам приложения В, при верхнем предельном значении сигнала тока и напряжения по таблице 2, поочередно для каждого канала.

Допускается устанавливать значение сигнала тока и напряжения с отклонением ± 1,0 % от проверяемого значения

Сигнал напряжения устанавливают с помощью источника G1.

1) Определение погрешности преобразования токового сигнала

- а) Значения входного и выходного токов определяются косвенным методом измерением падения напряжения на эталонных мерах сопротивления (R2 и R3 соответственно).
- б) Устанавливают, контролируя вольтметром PV1, на источнике G1 напряжение *Uпит*, B, рассчитанное по формуле (2):

$$U\Pi um = Ue + Ie \times R3 \times 10^{-3}$$
 (2)

- где *Us* верхний предел диапазона изменения напряжения для данного исполнения, B, в соответствии с таблицей 2.
- *l*в верхний предел диапазона изменения тока для данного исполнения в соответствии с таблицей 2, мА;
 - R3 номинальное значение меры сопротивления (R3 = 100 Om).

в) С помощью магазина сопротивлений R1 устанавливают ток в соответствии с таблицей 2, контролируя напряжение на эталонной мере сопротивления R3 вольтметром PV3.

Рассчитывают значение входного сигнала *Івх*, мА, по формуле:

$$lex = \frac{Uex}{R3}, (3)$$

где Uex — измеренное значение входного сигнала на эталонной мере сопротивления R3, мB; R3 = 100 Om.

г) Значение выходного сигнала *Івых*, мА, соответствующее контролируемому значению входного сигнала определяют по формуле:

$$Iвы x = \frac{Uвы x}{R2}, \tag{4}$$

где *Uвых* – измеренное значение входного сигнала на эталонной мере сопротивления R2, мB;

R2 = 100 Om.

д) Значение погрешности преобразования токового сигнала, γ_m (%), рассчитывают по формуле:

$$\gamma_m = \frac{lex - lehx}{lex} \times 100 \,, \tag{5}$$

где *Івх* — верхнее предельное значение входного сигнала, мА; *Івых* — значение выходного сигнала, определяемое по формуле (4), мА.

2) Определение погрешности преобразования сигнала напряжения постоянного тока

Входной сигнал, в соответствии с таблицей 2, задается от блока питания G1.

Значения входного сигнала *Uex* (см. а, b на рисунках B1 – B4) и выходного сигнала *Ueых* (см. с, d на рисунках B1 – B4), B, измеряются с помощью цифровых вольтметров PV2 и PV1 соответственно.

Значение погрешности преобразования напряжения постоянного тока, γ_H (%), рассчитывают по формуле:

$$\gamma_{\rm H} = \frac{Uex - Uebix}{Uex} \times 100 \,, \tag{6}$$

где *Uex* – измеренное значение входного напряжения, B; *Ueых* – измеренное значение выходного напряжения, B.

Барьеры считают выдержавшими испытание, если они соответствуют требованиям п. 1.2.9.

2.4 6 Требования к квалификации поверителей

Поверку барьеров должен выполнять поверитель, прошедший инструктаж по технике безопасности, освоивший работу с поверяемым барьером и используемыми эталонами.

2.4.7 Оформление результатов поверки

Положительные результаты первичной поверки оформляются записью в паспорте с указанием даты поверки и подписью поверителя, удостоверенной клеймом.

По результатам последующих поверок поверителем оформляется свидетельство о поверке согласно приказа Минпромторга России № 2510 от 31.07.2020 г. «Об утверждении порядка проведения поверки средств измерений, требований к знаку поверки и содержанию свидетельства о поверке».

Барьер, не удовлетворяющий требованиям одного из пунктов поверки, бракуется и не допускается к применению. При этом выпускается извещение о непригодности согласно приказа Минпромторга России № 2510 от 31.07.2020 г.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ

3.1 Обеспечение взрывозащищенности при эксплуатации

- 3.1.1 При эксплуатации барьеров необходимо выполнять все мероприятия в полном соответствии с разделами 2.2 и 2.3 настоящего РЭ. Кроме того, необходимо выполнять местные инструкции, действующие в данной отрасли промышленности, а также другие нормативные документы, определяющие эксплуатацию взрывозащищенного электрооборудования.
- 3.1.2 Обслуживающий персонал допускается к работе только после изучения настоящего РЭ и проведения инструктажа по технике безопасности на месте установки блока, имеющий квалификационную группу по технике безопасности не ниже II, образование не ниже средне-специального.
 - 3.1.3 Возможные неисправности барьеров безопасности и способы их устранения представлены в таблице 10.

Таблица 10

Неисправ-	Возможная при-	Способ обнаружения
ность	чина	и устранения
При включе- нии отсут- ствует выход- ной сигнал	Отсутствует входной сигнал	Проверить наличие сигнала на входных клеммах

- 3.1.4 Проводить ремонт и восстанавливать прибор имеет право только предприятие-изготовитель.
 - 3.1.5 Параметры предельных состояний:
- барьеры безопасности не обеспечивают измерение и последующее преобразование информативных сигналов датчиков;
- не обеспечивают питание датчиков взрывозащищенного исполнения.
- 3.1.6 Критические отказы при эксплуатации барьеров безопасности отсутствуют. Действие персонала не предусмотрено.

3.2 Профилактический осмотр

Периодичность профилактических осмотров барьеров устанавливается в зависимости от производственных условий, но не реже, чем два раза в год. В процессе профилактического осмотра должны быть выполнены мероприятия согласно п. 2.4.2, а также проведена проверка крепления и изоляции проводов объемного монтажа.

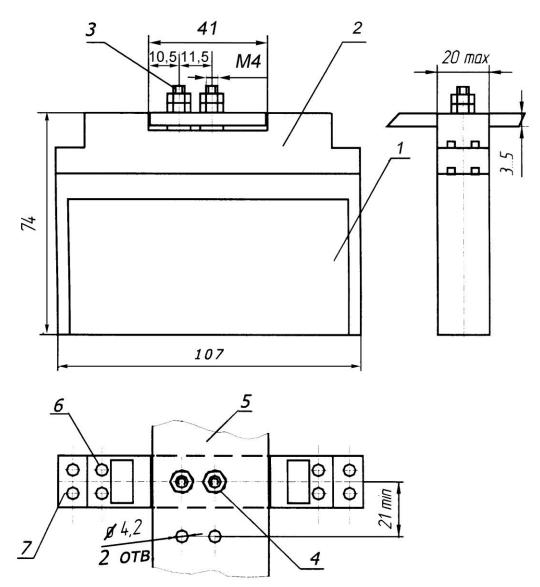
4 ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ

- 4.1 Барьеры в упаковке транспортируются всеми видами транспорта (авиатранспортом в отапливаемых герметизированных отсеках) в соответствии с правилами перевозок грузов, действующими на каждом виде транспорта.
- 4.2 Условия транспортирования должны соответствовать условиям хранения 5 по ГОСТ 15150-69.

Срок пребывания барьеров в условиях транспортирования – не более трех месяцев.

Барьеры должны храниться по условиям хранения 1 по ГОСТ 15150-69.

4.4 Назначенный срок хранения — 12 месяцев. По истечении назначенного срока хранения необходимо провести переосвидетельствование состояния.


5 УТИЛИЗАЦИЯ

После окончания срока службы прибор подлежит демонтажу и утилизации. В составе прибора отсутствуют драгоценные металлы, ядовитые, радиоактивные, взрывоопасные вещества, представляющие опасность для жизни. Демонтаж и утилизация прибора не требуют применения специальных мер безопасности, выполняются без специальных приспособлений и устройств.

Приложение А

(справочное)

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ БАРЬЕРОВ ШИННОГО МОНТАЖА

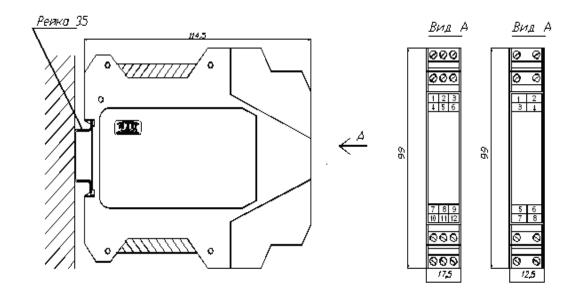

- 1 пластмассовая коробка;
- 2 крышка;
- 3 металлические стержни;
- 4 гайка;
- 5 шина заземления;
- 6, 7 клеммные колодки.

Рисунок А.1

Приложение Б

(справочное)

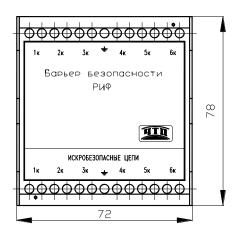

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ БАРЬЕРОВ РЕЕЧНОГО МОНТАЖА

Рисунок Б.1 – Установка барьеров на рейку. Заземление осуществляется гибкими проводами.

Таблица Б.1

	1
Обозначение барьера	Б, мм
РИФ-П1112DIN	
РИФ-П1142DIN	
РИФ-П1182DIN	17,5
РИФ-П1192DIN	
РИФ-П1292DIN	
РИФ-П1111DIN	
РИФ-П1113DIN	
РИФ-П1141DIN	
РИФ-П1181DIN	
РИФ-П1191DIN	12,5
РИФ-П1291DIN	12,5
РИФ-П2112DIN	
РИФ-П2142DIN	
РИФ-П2192DIN	
РИФ-П2292DIN	

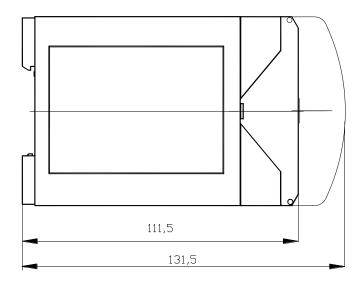
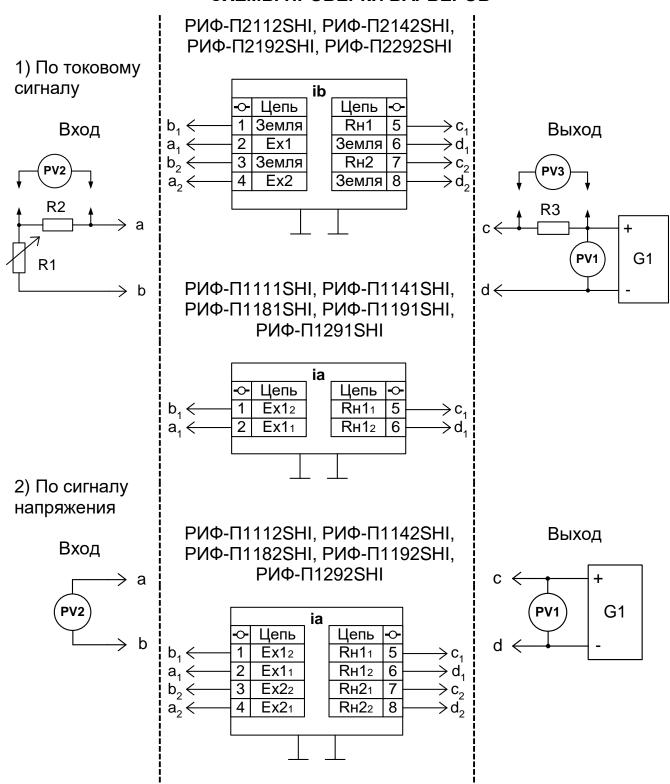



Рисунок Б.2. Габаритные размеры барьеров РИФ-П1116DIN и РИФ-П1196DIN

Приложение В (обязательное)

СХЕМЫ ПРОВЕРКИ БАРЬЕРОВ

Рисунок В.1 — Схемы проверки основной погрешности пассивных барьеров шинного монтажа РИФ-П1111SHI, РИФ-П1112SHI, РИФ-П2112SHI, РИФ-П1141SHI, РИФ-П1142SHI, РИФ-П1142SHI, РИФ-П1181SHI, РИФ-П1182SHI, РИФ-П1191SHI, РИФ-П1192SHI, РИФ-П1292SHI, РИФ-П1292SHI, РИФ-П2292SHI

(Средства проверки – см. таблицу В.1)

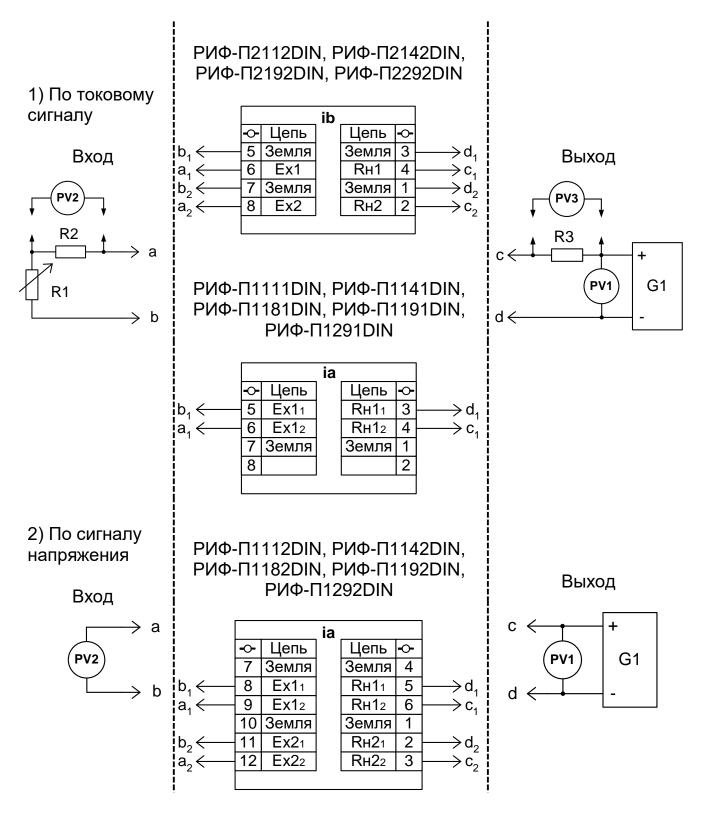


Рисунок В.2 — Схемы проверки основной погрешности пассивных барьеров реечного монтажа РИФ-П1111DIN, РИФ-П1112DIN, РИФ-П2112DIN, РИФ-П1141DIN, РИФ-П1142DIN, РИФ-П2142DIN, РИФ-П1181DIN, РИФ-П1182DIN, РИФ-П1191DIN, РИФ-П1192DIN, РИФ-П2192DIN, РИФ-П1291DIN, РИФ-П1292DIN, РИФ-П2292DIN (Средства проверки — см. таблицу В.1)

РИФ-П1113

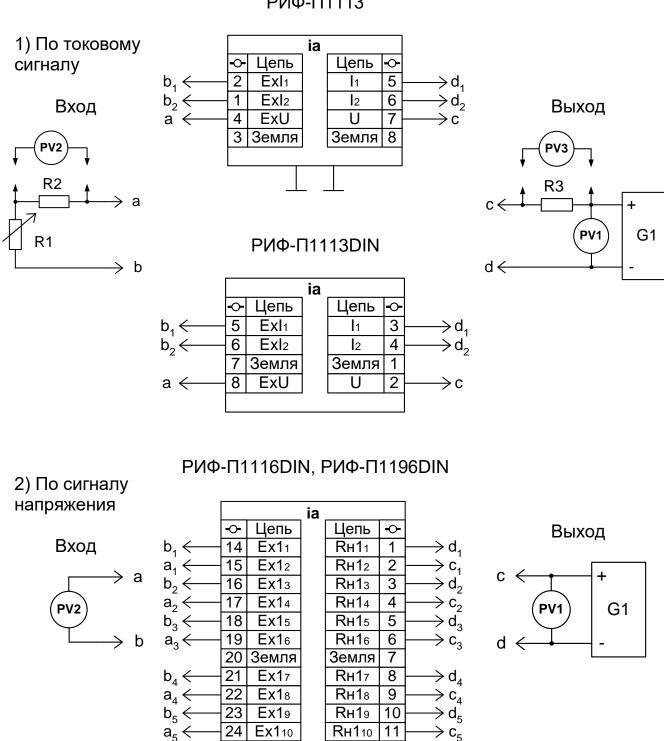


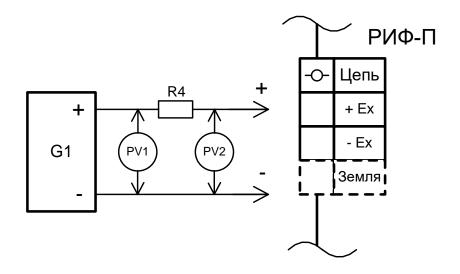
Рисунок В.3 – Схемы проверки основной погрешности пассивных барьеров РИФ-П1113, РИФ-П1113DIN, РИФ-П1116DIN, РИФ-П1196DIN (Средства проверки – см. таблицу В.1)

RH111

RH1₁₂ | 13

12

 $\rightarrow d_6$


 $\rightarrow c_6$

 $b_6 \leftarrow$

 $a_6 \leftarrow$

25 Ex1₁₁

26 Ex1₁₂

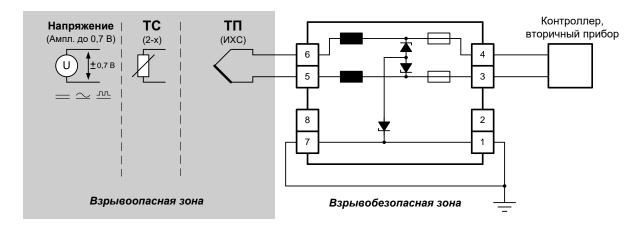
R4 - Резистор C2-33H-1 Вт 1 кОм ± 5 %

Рисунок В.4 - Схема проверки напряжения на искробезопасных входах (Средства проверки – см. таблицу В.1).

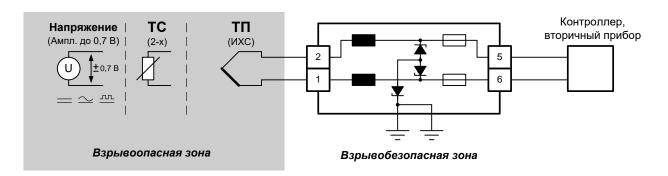
Таблица В.1 - Средства проверки

Наименование	Основные характеристики, не- обходимые для поверки		Рекоменду- емый тип
Эталонная мера сопро- тивления однозначная	100 Ом, Класс точности 0,01		P331
Источник напряжения по- стоянного тока	Выходное напряжение от 0 до 50 В		Б5-45А
Магазин сопротивлений	Класс 0,02; цена деления 0,01; диапазон не менее 50 кОм		MCP-63
Миллиамперметр пере- менного тока	от 0 до 0,15 A, Класс точности 0,5		Ц4352
Термометр	0-50 °C, цена деления 0,1 °C		ТЛ
Барометр	84-106,7 кПа		M-110
Цифровой вольтметр	0 - 10 мВ 0 - 1 В 0 - 10 В	±0,02 % 0,01/ 0,01 0,005/ 0,001	Щ31

Примечание – Возможно применение средств измерений и оборудования любых типов, основные характеристики которых не хуже приведенных

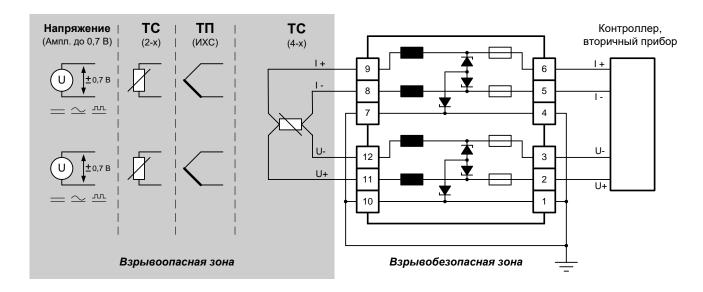

Приложение Г (обязательное)

ВАРИАНТЫ СХЕМ ВНЕШНИХ ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ БАРЬЕРОВ

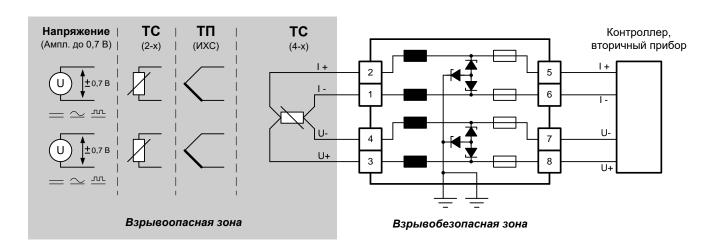

Типы подключаемых сигналов или датчиков		Номер схемы	
Основное применение	Дополнительное применение	подключения	
<u>Для защиты простейших датчиков</u>			
ТП (ИХС)	TC-2x; H (±0,7 B)	Γ.1	
TC-4x	аналогично <i>РИФ-П1111</i>	Γ.2	
TC-3x	аналогично <i>РИФ-П1111</i>	Г.3	
Все термопары и термо-	аналогично <i>РИФ-П1111</i> ,	Γ.4	
сопротивления	РИФ-П1112, РИФ-П1113		
2 ТП (не ИХС)		Γ.5	
<u>Для защиты стандартных сигналов и интерфейсов</u>			
RS-485	Namur; H (±12 B)	Г.6	
RS-422	П; РП;	Γ.7	
	аналогично <i>РИФ-П1141</i>		
2 Namur (заземл.)	2 H (±12 B, заземл.)	Г.8	
Для защиты токовой автоматики и цепей питания датчиков			
АТ (старая)	ЭП; ЭПП; Н (±18 В)	Г.9	
2 АТ (старая)	аналогично <i>РИФ-П1181</i>	Γ.10	
AT	OK; H (±24 B)	Γ.11	
2 AT	аналогично <i>РИФ-П1191</i>	Γ.12	
2 ТН-6ти	аналогично <i>РИФ-П1191</i> и <i>РИФ-П11</i> 92	Г.13	
2 АТ (заземл.)	аналогично <i>РИФ-П1192</i> , но	Г.14	
	заземленные		
Питание незаземл. дат-	АТ для группы IIA, с под-	Г.15	
чиков до 1,5 Вт	держкой HART		
Питания 2-х незаземл.	ТН-4х для группы IIA; ана-	Г.16	
датчиков до 1,5 Вт	логично <i>РИФ-П1291</i>		
Питание 2-х заземл. дат-	аналогично <i>РИФ-П1292</i> , но	Г.17, Г.18	
чиков до 1,5 Вт	заземленные; ПВТ		

Новое поколение барьеров безопасности РИФ-П

I *Барьеры используемые для защиты простейших датчиков*

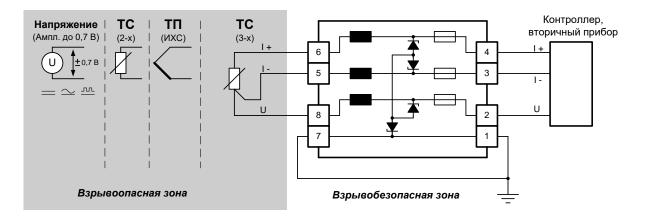


а) реечного монтажа (РИФ-П1111DIN)

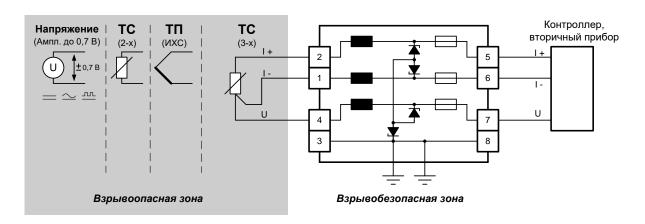


б) шинного монтажа РИФ-П1111SHI

Рисунок Г.1 - Схемы подключения барьеров РИФ-П1111SHI(DIN)



а) реечного монтажа (РИФ-П1112DIN)



б) шинного монтажа (РИФ-П1112SHI)

Рисунок Г.2 - Схемы подключения барьеров РИФ-П1112 SHI(DIN)

а) реечного монтажа (РИФ-П1113DIN)

б) шинного монтажа (РИФ-П1113SHI)

Рисунок Г.3 - Схемы подключения барьеров РИФ-П1113SHI(DIN)

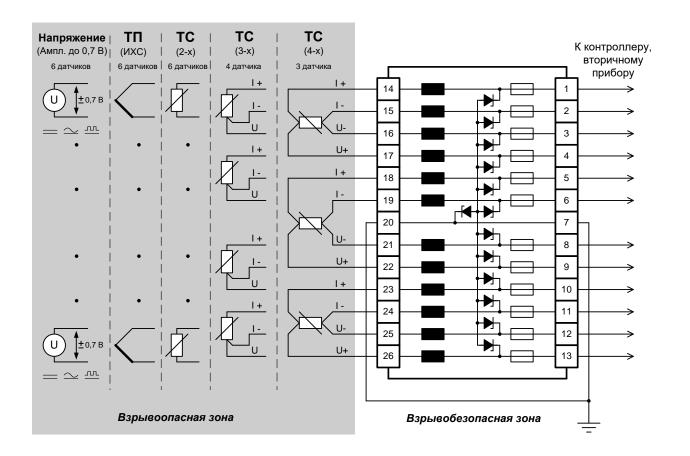
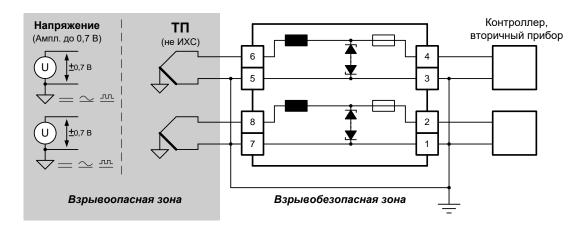
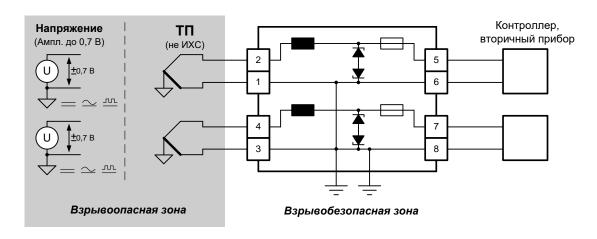
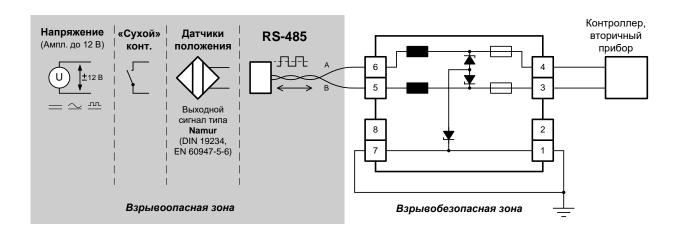




Рисунок Г.4 - Схемы подключения барьеров РИФ-П1116DIN реечного монтажа


а) реечного монтажа (РИФ-П2112DIN)

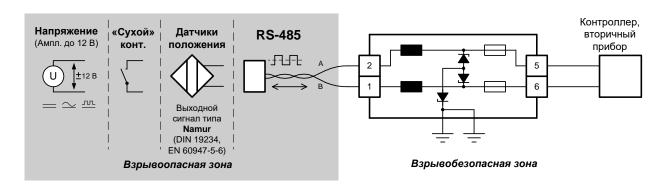
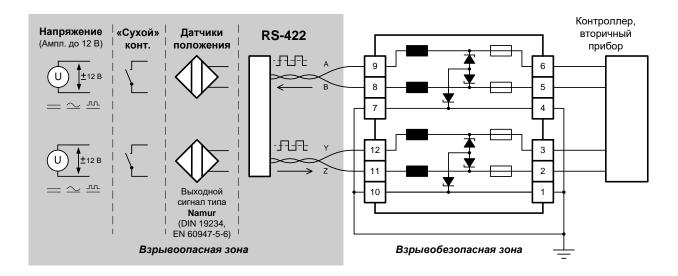
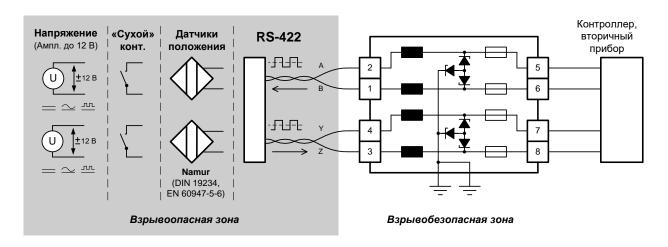

б) шинного монтажа (РИФ-П2112)

Рисунок Г.5 - Схемы подключения барьеров РИФ-П2112SHI (DIN)

II Барьеры используемые для защиты стандартных сигналов и интерфейсов

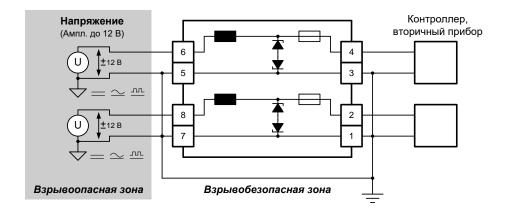


а) реечного монтажа (РИФ-П1141DIN)

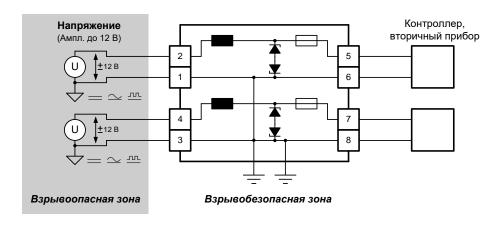


б) шинного монтажа (РИФ-П1141SHI)

Рисунок Г.6 - Схемы подключения барьеров РИФ-П1141SHI(DIN)



а) реечного монтажа (РИФ-П1142DIN)



б) шинного монтажа (РИФ-П1142SHI)

Рисунок Г.7 - Схемы подключения барьеров РИФ-П1142SHI(DIN)

а) реечного монтажа (РИФ-П2142DIN)

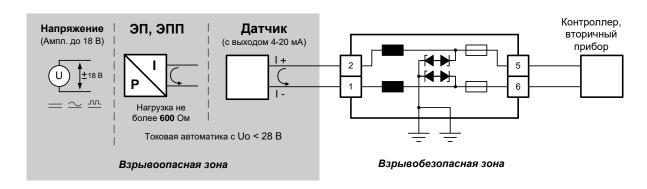
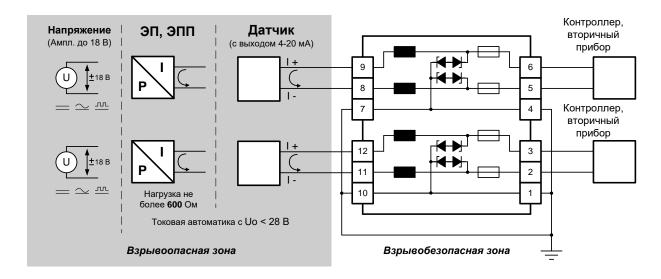
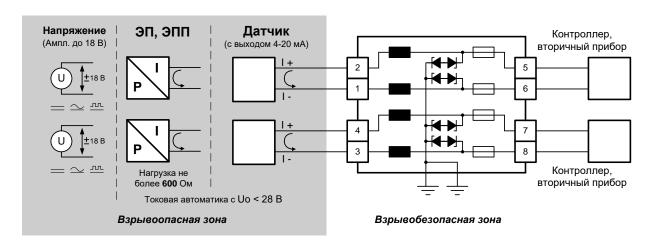

б) шинного монтажа (РИФ-П2142SHI)

Рисунок Г.8 - Схемы подключения барьеров РИФ-П2142SHI(DIN)

III Барьеры используемые для защиты токовой автоматики и цепей питания датчиков

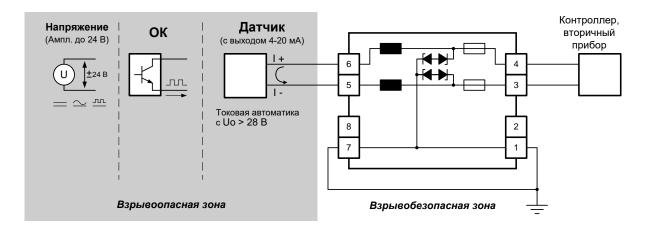


а) реечного монтажа (РИФ-П1181DIN)

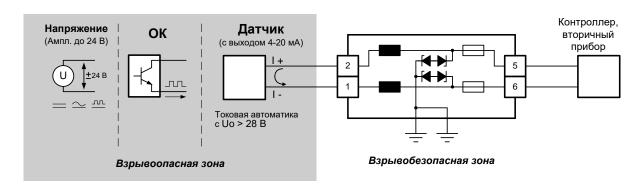


б) шинного монтажа (РИФ-П1181SHI)

Рисунок Г.9 - Схемы подключения барьеров РИФ-П1181SHI(DIN)

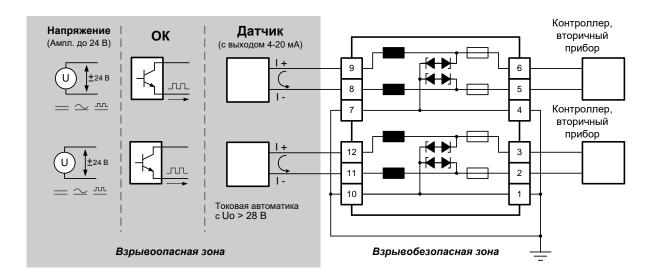


а) реечного монтажа (РИФ-П1182DIN)

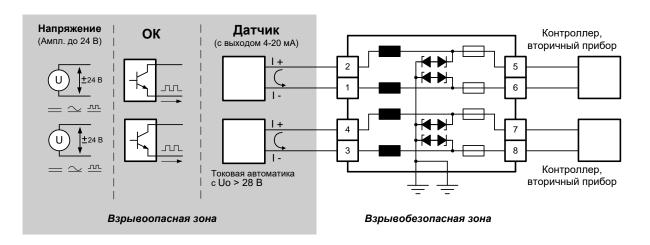


б) шинного монтажа (РИФ-П1182SHI)

Рисунок Г.10 - Схемы подключения барьеров РИФ-П1182SHI(DIN)



а) реечного монтажа (РИФ-П1191DIN)



б) шинного монтажа (РИФ-П1191SHI)

Рисунок Г.11 - Схемы подключения барьеров РИФ-П1191SHI(DIN)

а) реечного монтажа (РИФ-П1192DIN)

б) шинного монтажа (РИФ-П1192SHI)

Рисунок Г.12 - Схемы подключения барьеров РИФ-П1192SHI(DIN)

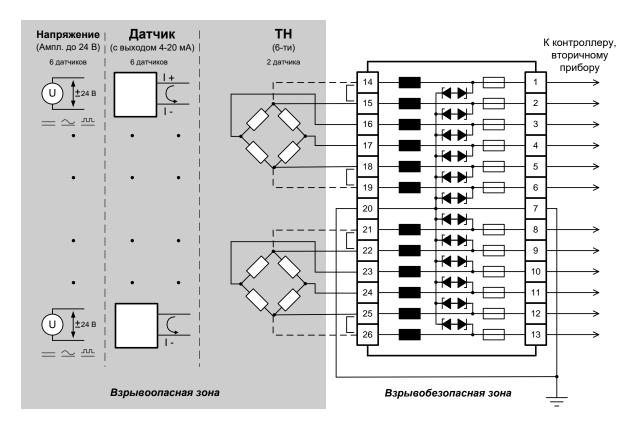
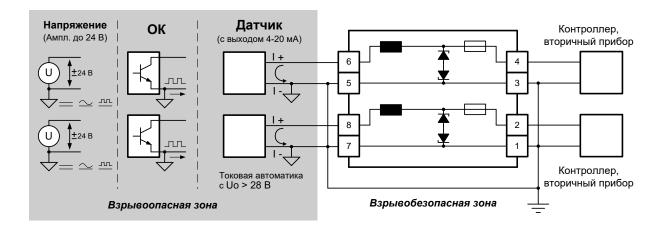
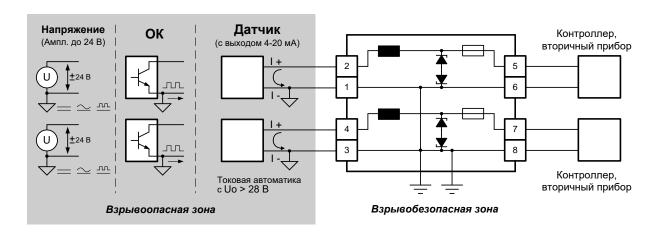
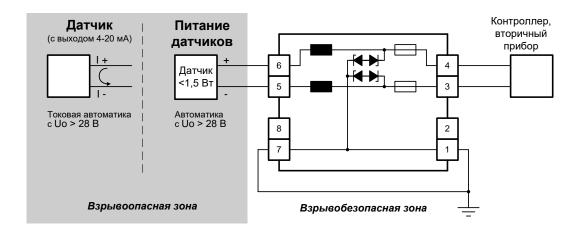
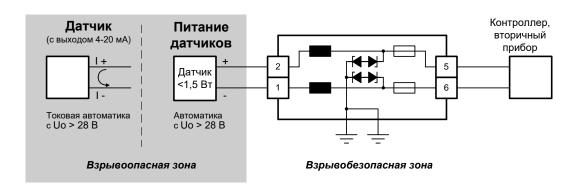




Рисунок Г.13 - Схемы подключения барьеров РИФ-П1196DIN

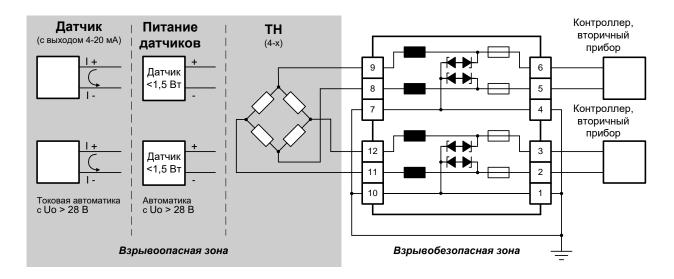


а) реечного монтажа (РИФ-П2192DIN)

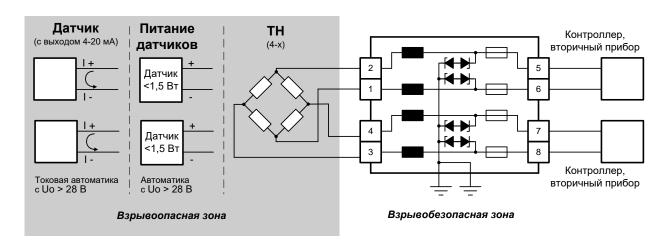


б) шинного монтажа (РИФ-П2192SHI)

Рисунок Г.14 - Схемы подключения барьеров РИФ-П2192SHI(DIN)

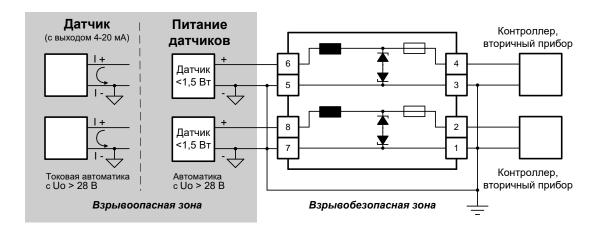


а) реечного монтажа (РИФ-П1291DIN)

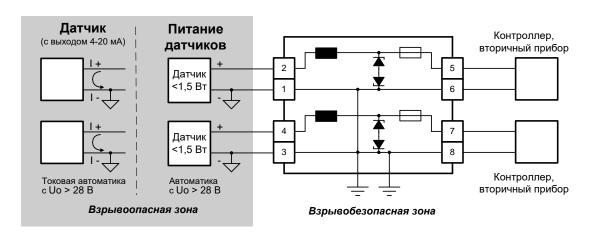


б) шинного монтажа (РИФ-П1291ШИН)

Рисунок Г.15 - Схемы подключения барьеров РИФ-П1291SHI(DIN)

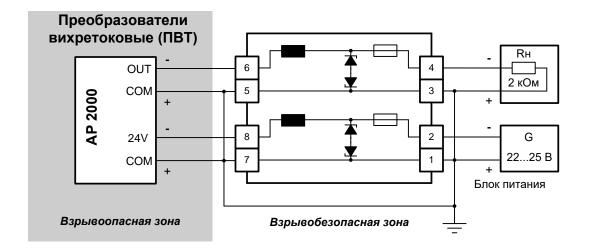


а) реечного монтажа (РИФ-П1292DIN)



б) шинного монтажа (РИФ-П1292SHI)

Рисунок Г.16 - Схемы подключения барьеров РИФ-П1292SHI(DIN)

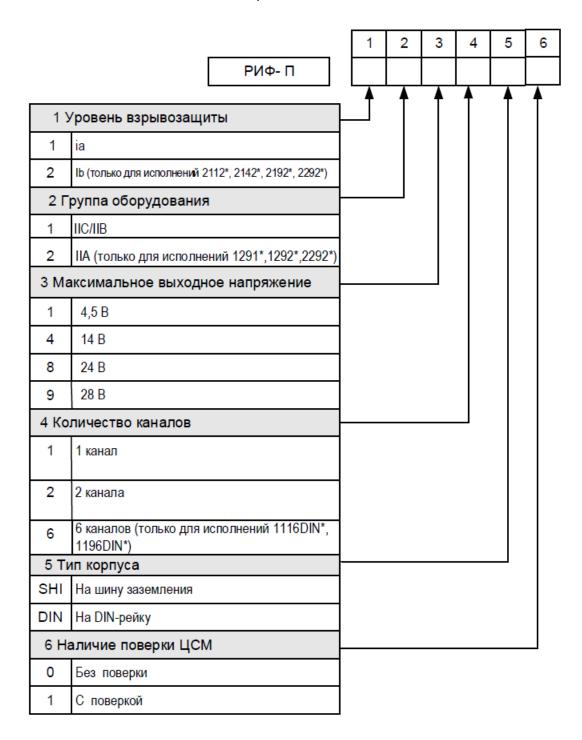


а) реечного монтажа (РИФ-П2292DIN)

б) шинного монтажа (РИФ-П2292SHI)

Рисунок Г.17 - Схемы подключения барьеров РИФ-П2292SHI(DIN)

а) реечного монтажа (РИФ-П2292DIN)



б) шинного монтажа (РИФ-П2292SHI)

Рисунок Г.18 - Схемы подключения барьеров РИФ-П2292SHI(DIN) к преобразователям вихретоковым AP 2000, производства ООО «ГлобалТест».

Приложение Д (обязательное)

Карта заказов

Примечание – последние символы в исполнениях * могут быть любые.

Пример записи заказа: РИФ-П1142SHI0;

РИФ-П1111DIN1

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

OC.C.34.004.A № 41118/1

Срок действия до 27 апреля 2025 г.

НАИМЕНОВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ Барьеры безопасности РИФ

ИЗГОТОВИТЕЛЬ
ООО "Теплоприбор-Сенсор", г. Челябинск

РЕГИСТРАЦИОННЫЙ № 45499-10

ДОКУМЕНТЫ НА ПОВЕРКУ

2.087.044-02 РЭ (РИФ-АГ), 2.087.044-00 РЭ (РИФ-П), 2.087.044-01 РЭ (РИФ-А), разделы 2.4

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 2 года

Свидетельство об утверждении типа продлено приказом Федерального агентства по техническому регулированию и метрологии от **27 апреля 2020 г.** № **840**

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя Федерального агентства

А.В.Кулешов

27" 04 2020 I

Серия СИ № 044616

ЕВРАЗИЙСКИЙ ЭКОНОМИЧЕСКИЙ СОЮЗ

HO HANGER

№ EAЭC RU C-RU.AЖ58.B.05356/24

Серия RU

№ 0513271

ОРГАН ПО СЕРТИФИКАЦИИ Орган по сертификации Общества с ограниченной ответственностью «ПРОММАШ ТЕСТ Инжиниринг». Место нахождения (адрес юридического лица): 119501. Россия, город Москва, внутригородская территория города муниципального округа Очаково-Матвеевское, улица Веерная, дом 2, этаж П, помещение №1, комната №4. Адрес места осуществления деятельности: 142111, Россия, Московская область, город Подольск, улица Окружная, дом 2В, комнаты 1,5. Уникальный номер записи об аккредитации в реестре аккредитованных лиц: RA.RU.10AЖ58. Дата решения об аккредитации: 23.11.2017 года. Номер телефона: +7(495) 011-03-06. Адрес электронной почты: info@pmte.org.

ЗАЯВИТЕЛЬ ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ТЕПЛОПРИБОР-СЕНСОР"

Место нахождения (адрес юридического лица) и адрес места осуществления деятельности: 454047, Россия, Челябинская область, городской округ Челябинский, внутригородской район Металлургический, город Челябинск, улица Павелецкая 2-я, дом 36, строение 3, офис 203

Основной государственный регистрационный номер 1037402821257.

Телефон: +73517257697 Адрес электронной почты; sales@tpchel.ru

ИЗГОТОВИТЕЛЬ ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ТЕПЛОПРИБОР-СЕНСОР"

Место нахождения (адрес юридического лица) и адрес места осуществления деятельности по изготовлению продукции: 454047. Россия, Челябинская область, городской округ Челябинский, внутригородской район Металлургический, город Челябинск. улица Павелецкая 2-я, дом 36, строение 3, офис 203

ПРОДУКЦИЯ Барьеры безопасности РИФ Маркировка взрывозащиты согласно приложению (бланки №№ 1024646, 1024647, 1024648, 1024649). Продукция изготовлена в соответствии с ТУ 4217-055-00226253-2006 «Барьеры безопасности РИФ. Технические условия». Серийный выпуск

КОД ТН ВЭД ЕАЭС

8536302000

СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ

Технического регламента Таможенного союза "О безопасности оборудования для работы во взрывоопасных средах" (ТР ТС 012/2011)

СЕРТИФИКАТ СООТВЕТСТВИЯ ВЫДАН НА ОСНОВАНИИ

Протоколов испытаний №№ 9305ИЛПМВ, 9306ИЛПМВ от 02.05.2024 года, выданных Испытательным центром Общества с ограниченной ответственностью «ПРОММАШ ТЕСТ» (уникальный номер записи об аккредитации в реестре аккредитованных лиц RA RU.21BC05) Акта анализа состояния производства №24/04/0003-2 от 05 04.2024, выданного Органом по сертификации Общества с ограниченной ответственностью "ПРОММАШ ТЕСТ Инжиниринг" (уникальный номер записи об аккредитации в реестре аккрелитованных лиц RA.RU.10AЖ58) эксперт, подписавший акт анализа состояния производства - Кравченко Андрей Евгеньевич Заверенные копии документов: ТУ 4217-055-00226253-2006, 2.087, 044-00 РЭ, 2.087, 044-01 РЭ, 2.087, 044-02 РЭ Схема сертификации: 1с

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Группа 5 по ГОСТ 15150-69. Средний срок службы – не менее 12 лет, срок хранения

примения изготовленную с даты б месяцев со дня изготовления. Действие сертификата соответствия распространяется на серийно выпускаемую продукцию, изготовленную с даты изготовления отобранных образцов (проб) продукции, прошедших исследования (испытания) и измерения; с 04.2024 года. Стандарты, обеспечивающие соблюдение требований Технического регламента Таможенного союза ТР ТС 012/3011 "О безопасности оборудования для работы во взрывоопасных средах": согласно приложениям - бланки №№ 1024646, 1024647, 1024648 1074649 ого

СРОК ДЕЙСТВИЯ С включительно

06.05.2024

ΠΟ 05.05.2029

🛂 🔳 Руководитель (уполномоченное лицо) органа по сертификации

Эксперт (эксперт-аудитор) (эксперты (эксперты-аудиторы))

проммаш тест

Инживиринг Ха

Контактная информация:

Адрес: 454047, Россия, Челябинск,

ул. Павелецкая 2-я, д. 36, стр.3, оф. 203

Телефон: +7 351 725-75-64

Факс: +7 351 725-89-59

E-mail: sales@tpchel.ru

Сайт: www.tpchel.ru

Сервисная

служба: +7 (351) 725-74-72, 725-75-10

Продукция произведена ООО «Теплоприбор-Сенсор»

2024